Class of Stellar Explosions Found To Be Galactic Producers of Lithium (phys.org) 13
A team of researchers, led by astrophysicist Sumner Starrfield of Arizona State University, has combined theory with both observations and laboratory studies and determined that a class of stellar explosions, called classical novae, are responsible for most of the lithium in our galaxy and solar system. The results of their study have been recently published in the Astrophysical Journal of the American Astronomical Society. Phys.Org reports: Several methods were used by the authors in this study to determine the amount of lithium produced in a nova explosion. They combined computer predictions of how lithium is created by the explosion, how the gas is ejected and what its total chemical composition should be, along with telescope observations of the ejected gas, to actually measure the composition. [Astrophysicist Sumner Starrfield of Arizona State University] used his computer codes to simulate the explosions and worked with co-author and American Astronomical Fellow Charles E. Woodward of the University of Minnesota and co-author Mark Wagner of the Large Binocular Telescope Observatory in Tucson and Ohio State to obtain data on nova explosions using ground-based telescopes, orbiting telescopes and the Boeing 747 NASA observatory called SOFIA.
Co-authors and nuclear astrophysicists Christian Iliadis of the University of North Carolina at Chapel Hill and W. Raphael Hix of the Oak Ridge National Laboratory and University of Tennessee, Knoxville provided insight into the nuclear reactions within stars that were essential to solving the differential equations needed for this study. "Our ability to model where stars get their energy depends on understanding nuclear fusion where light nuclei are fused to heavier nuclei and release energy," Starrfield said. "We needed to know under what stellar conditions we can expect the nuclei to interact and what the products of their interaction are."
Co-author and isotope cosmochemist Maitrayee Bose of ASU's School of Earth and Space Exploration analyzes meteorites and interplanetary dust particles that contain tiny rocks that formed in different kinds of stars. "Our past studies have indicated that a small fraction of stardust in meteorites formed in novae," Bose said. "So the valuable input from that work was that nova outbursts contributed to the molecular cloud that formed our solar system." Bose further states that their research is predicting very specific compositions of stardust grains that form in nova outbursts and have remained unchanged since they were formed.
Co-authors and nuclear astrophysicists Christian Iliadis of the University of North Carolina at Chapel Hill and W. Raphael Hix of the Oak Ridge National Laboratory and University of Tennessee, Knoxville provided insight into the nuclear reactions within stars that were essential to solving the differential equations needed for this study. "Our ability to model where stars get their energy depends on understanding nuclear fusion where light nuclei are fused to heavier nuclei and release energy," Starrfield said. "We needed to know under what stellar conditions we can expect the nuclei to interact and what the products of their interaction are."
Co-author and isotope cosmochemist Maitrayee Bose of ASU's School of Earth and Space Exploration analyzes meteorites and interplanetary dust particles that contain tiny rocks that formed in different kinds of stars. "Our past studies have indicated that a small fraction of stardust in meteorites formed in novae," Bose said. "So the valuable input from that work was that nova outbursts contributed to the molecular cloud that formed our solar system." Bose further states that their research is predicting very specific compositions of stardust grains that form in nova outbursts and have remained unchanged since they were formed.
Antidepressant (Score:4, Funny)
Those stars died to make us happy. That's quite humbling.
Re: (Score:2)
Far from it. It's sad we can't get to all that lithium any time soon.
Galactic Producers of Lithium (Score:3)
I bet shipping costs are a bitch...
Sumner Starrfield (Score:2)
Re: Sumner Starrfield (Score:1)
Re: (Score:2)
Re: (Score:2)
It's a subject that's been argued about: Nominative determinism
https://en.wikipedia.org/wiki/... [wikipedia.org]
whew (Score:1)
Re: (Score:2)