Video Genspace: New York City's Community Biolab (Video) 29
Oliver Medvedik: Hi. I’m Oliver. I’m a co-founder of Genspace. I have a Ph.D. in Molecular Biology and welcome to our community biotech lab. So, you’re standing in the middle of Genspace right now. So, let me give you a tour of this space.
So, right over here is Dr. Ellen Jorgensen, another co-founder, working on Genspace related projects. Here we have our teaching and office area where we essentially give classes in biotech. And over here in this glass cube is one of our BSL1 (Biosafety Level One) laboratories. So, here’s another laboratory behind this wall, so this is another BSL1 lab where we do lot of prep work. We also have incubators in here. And here is another laboratory zone that we are expanding into.
So, we have a fairly sizable area to do a variety of projects. So when people come to Genspace, they can either work on a project of their own devicing, so we offer a space for people to work on their projects or they can volunteer and work on somebody else’s project. Or, they can take a class and learn about biotech, so we offer a number of courses in genotyping, in biotechnology, in synthetic biology where they can learn hands-on the tools of the trade.
Timothy Lord: Can you talk a little bit about what the Level One containment means?
Oliver Medvedik: So, Level One containment basically means that we work with organisms that are harmless or non-pathogenic. So, essentially, all of the microbes we work with here, all of the organisms, you essentially could work in a high school biology class. So, that’s essentially what BSL1 means technically.
Timothy Lord: Is that from the CDC?
Oliver Medvedik: That is guidelines that were enacted by CDC and the NIH and these are guidelines that are in place throughout the nation and also pretty much throughout the world.
Timothy Lord: So, you are officially certified as well actually physically having those standards?
Oliver Medvedik: So, there’s no official certification process. So, these are guidelines. So, since we don’t deal with any pathogenic organisms, everything here by definition is harmless.
Timothy Lord: Can you show us some of the interesting equipment around?
Oliver Medvedik: Sure. Why don’t you follow me? So, here in this space we have a number of useful items for biotech, over here we have a polymerase chain-reaction machine, so this machine here makes copies of DNA. So, this is a very important piece of gear for any modern molecular biology laboratory. So, you are going to essentially start with one piece of DNA and make millions and millions of copies within an hour. So, before you can actually work with DNA, you need to have sufficient quantities of it and this is one of the key pieces of gear that allows laboratories to work with DNA. So, whether for analysis purposes or to actually take that DNA and manipulate it with regards to genetic engineering, you need to have that raw material to work with and this is one of the key pieces of gear. So, we have two PCR machines here.
Timothy Lord: Probably hard to find in your average [apartment] laboratory?
Oliver Medvedik: Pretty easy to find on eBay. So, there is certainly a lot of material that you can purchase rather inexpensively, lot of used second-hand equipment. But, again, it’s kind of hard to work with this stuff in your bedroom, because you kind of need a suite of all the other tools that a laboratory has and that’s one of the reasons we started the community biotech lab is for everybody to have shared tools to use in a space like this.
Timothy Lord: And you have been [running] it for three years now?
Oliver Medvedik: So we have been incorporated for the past three years. But, this space that you’re standing in right now, we’ve officially opened our doors to the public in December of 2010, so we’re actually rapidly approaching our second year anniversary.
Timothy Lord: Besides the PCR machine, what else would somebody use that they’re not going to have from the science kit through the mail?
Oliver Medvedik: Right. So we just started doing some protein work, so these are acrylamide gels for doing polyacrylamide gel electrophoresis. So, that term basically, that kind of mouthful of a term, means that you separate proteins. So, we don’t only work with DNA, but we also work with proteins. So, proteins are sort of the business end of DNA. They are the nanomachines of the cell. So, we use these types of apparati to essentially look at proteins.
So, we do protein work here, we have power supplies, so this is a power supply that allows us to separate out molecules, both DNA and proteins. So you need to basically give a strong current, so you can resolve these molecules and then look at them. We have gear here for putting genes into cells, so this is an electroporator. This machine essentially zaps microbes and cells and gets DNA to go inside.
What else do we have? We have a makeshift incubator here for growing plants, so this is actually cobbled together from some leftover restaurant gear, so we have some florescent lights here for growing plants. So, we have a centrifuge here. This is a machine – let me just open this – for spinning samples quite rapidly. So, we have ones that go much faster. This one has a top range of 4,300 RPM. We have ones that go up to 13,000 RPM.
So, this is essentially used for spinning these tubes and when you spin them in a high velocity, things that are more dense collect on the bottom. So, this allows you to separate things based on density. So, that’s a typical piece of gear you find in the laboratory.
Here we have a spectrophotometer. This is a machine that basically shines a beam of light through this little glass or plastic container called a cuvette and this allows you to determine concentrations of things. So basically when a solution changes color, this gives a quantity and tells you how much of that color changes happen. So, you can do various assays. Basically, you can determine if a gene has to be turned on or not turned on. So you need some sort of way to quantitate that, so we use the spectrophotometer for that.
So those are just some of the key items here. We have a dissecting microscope for looking at samples. We have more microscopes in the room behind you.
Timothy Lord: That will be the Hail Mary corner?
Oliver Medvedik: Oh, that’s an inside joke. Ellen actually put that there. We recently were part of a competition called the International Genetically-Engineered Machines competition. It’s an undergrad competition. Right now it’s expanded to about 160 teams around the world. We sponsored the NYU Gallatin team from New York University and we had students from a number of other universities participating here in Genspace using the facilities. So we had students from NYU, we had students from Cooper Union, we even had high school students from Brooklyn Technical High School and a number of other universities.
Our project was essentially to attempt to modify a bacteria that produces cellulose. So, the same type of material you find in paper, so this is actually a sample of bacterial cellulose, right here. So, it kind of looks like parchment. And this bacteria is found in kombucha. It’s essentially the drink that some people like to drink and these sheets basically form and these sheets are the same type of material you find in trees and plants, only bacteria can produce it.
We were trying to and we still are attempting to genetically modify this bacteria to produce other types of biopolymers. And what I mean by biopolymer is a naturally occurring polymer, so unlike polyethylene, cellulose is repeating units of glucose.
There’s also chitin, which is another prevalent biopolymer and that’s found in fungi and insect exoskeleton. So that tough wall you find in insects is a polymer of N-acetylglucosamine unlike cellulose which is polymers of glucose. So, we wanted to see if we can get this bacteria to produce other composite biopolymers.
So, that was our project and this Hail Mary corner, that’s kind of a longwinded answer, but we were doing some last minute work and we got some last minute data, and six hours before we were going to put it on a Web page, and this is where it happened.
What could possibly go wrong (Score:1)
It is confined to non-hazardous experiments
And they are, of course, policing that carefully, right? I mean, most universities wouldn't just let any yahoo walk in off the street and have full access to their biolabs. So naturally, these guys aren't either, right? They wouldn't do that smack in the middle of one of the most densely populated cities on the planet--I mean that goes without saying. Of course, they've allotted money and personnel for security, checking for credentials, etc. (it's probably foolish of me to even ask, OF COURSE they have). I
Re: (Score:3)
The important thing is that you've answered all of your questions and you're satisfied with the answer.
The alternative answer is that it is stupendously hard to do anything dangerous in a biology lab, unless you spend millions of dollars on equipment and supplies. The idea of any individual or group less powerful than a small government or large corporation doing anything dangerous with a bio lab is pointless low-budget sci-fi wankery. With no effort and no training, you could just go to Africa and bring ba
Re: (Score:2)
Re: (Score:3)
I dont think that is correct. Just to make a point
Blood Agar Plates == 10 for $23.95 (Online Science Mall)
Laminar flow hood == $400 (E-bay)
Incubator == $100 (e-bay)
Sample of pathogen == Free from Rats you just have to catch and test enough tell you find what you are looking for.
Microscope for identifying various pathogens. == $150 (E-bay)
So the stuff to capture and culture out a pathogen is less that $1000 and there are some nasty ones out there to be had. Just to point this out as well bubonic plague is e
Re: (Score:2)
Re: (Score:2)
Ill concede on that point but will add that you can get everything you need from Internet sources for less than 20k
Re: (Score:2)
Re: (Score:2)
I think the bigger part of that story is basically, it's easy and not very costly to set up your own at home biolab if you want to, and if you have the know how. It can be used for all nefarious purposes, so why hasn't one yet? Because it's probably
a) hard to do
b) hard to do and not kill yourself
c) just plain dumb
Having a open lab willing to educate and accept students and others who have a knack for using their equipment can be both rewarding, educational and lucrative. If you leave paranoia at home, you
Re: (Score:2)
A is not true, B well yes and no, C I disagree it is fun having your own biolab and you can do a lot with it.
Though I may be a bit optimistic, I have a biolab including a class 100 clean room and a degree to go with it so maybe the normal people are just too dumb for it but I tend to believe that everyone has the ability to excel given the right knowledge.
Re: (Score:2)
I mean, most universities wouldn't just let any yahoo walk in off the street and have full access to their biolabs.
Yeah, pretty much we will. You're an undergrad and you want to help? Here's a key.
Re: (Score:1)
Re: (Score:2)
They could meet the reasonable one. I work in a biology lab, one that's not free-to-all. I wouldn't describe my work as hazardous. We work with some pretty serious toxins, but you'd have to ingest them, not wear gloves, or juggle the bottles for it to be dangerous.
Cooking involves
Re: (Score:2)
Re: (Score:1)
Benjy Mouse, is that you?
science is for everyone, not just a chosen few (Score:2)
What the hell is that supposed to mean? Are scientists hand-picked by the king now?
Re:science is for everyone, not just a chosen few (Score:4, Insightful)
We sure are. Our degrees are in Latin and everything.
The parameters are "do you have the patience and dedication to get a four-year degree?", "how about a two-year research project after that?", "okay, what if we replace that last one with a five-year research project instead?", "can you afford it all given your socioeconomic situation?", "can you devote your career to it?", "are you not already trapped in another career?". If the answer to all of these is "yes", then the king has hand-picked you. Otherwise you'd be SOL without a bio-hacker space like this.
Re: (Score:3)
I find that to be a bit of an unfair characterization.
Sure, there are definite socioeconomic barriers - it favors someone who was exposed to science at a young age, or could afford to get a decent education (or be so good that he could get into a school where he didn't have to pay tuition), or did not have family obligations that would distract from a career - these things all unfairly inhibit participation in science. But I don't think that things like patience and dedication can be characterized as "hand-
Re: (Score:2)
Re: (Score:2)
Re: (Score:2)
Imagine that (Score:1)
Imagine that you are at 33 Flatbush Ave. in the Brooklyn borough of what David Letterman calls "the world's greatest city." You go to the 7th floor. Congratulations. You have found New York City's community biolab, Genspace.
So if I were to go there, that's where I'd be? Where ever you go, there you are! Funny how that works.