Follow Slashdot blog updates by subscribing to our blog RSS feed


Forgot your password?
Space Science

Tidal Heating Shrinks Goldilocks Zone Around Red Dwarfs 70

scibri writes "An overlooked factor could shrink the habitable zone for planets around M-class dwarf stars by as much as 50%. For these smaller, cooler stars, the habitable zone was thought to extend to relatively close orbits. But as you get closer to a star, the tidal force it exerts on a planet increases. Since planets do not have perfectly circular orbits, tidal forces cause the planet to flex and unflex each time it moves closer to or further from its star; kneading its interior to produce massive quantities of frictional heat — enough to scour the planet of any liquid water. Because M-class dwarf stars are the most numerous in the galaxy, and close-in planets are easier to spot than more distant ones, such stars have been a major target for planet hunters seeking Earth-like worlds. But now it seems we may have been looking in the wrong place for Earth's twin."
This discussion has been archived. No new comments can be posted.

Tidal Heating Shrinks Goldilocks Zone Around Red Dwarfs

Comments Filter:
  • by Lithdren ( 605362 ) on Tuesday May 08, 2012 @03:15PM (#39932095)
    I dont see anything that claims thats not possible, so I dont quite get where you get this from. It would be a strange place indeed, a planet warmed by tidal friction from within would have a very different biology of life. I'd imagine most life would be deep underwater near rifts in the oceans floor, there'd be no point in forming near the surface, depending on what caused the tidal forces.

    Would make for an interesting long-term strategy for an advanced race to survive past the life of stars, if you can heat from within via tidal forces around say, a super massive black hole. Just dont be the jerk to mess that one up.

    "Sir! We forgot to exchange values between Metric and Imperial, the entire planet is about to get sucked into a black hole!"
    "Well...alteast we dont need to worry about budget cuts next year."
  • by Immerman ( 2627577 ) on Tuesday May 08, 2012 @09:00PM (#39936611)

    They compare to Jupiter's moon Io in the article, whose proximity causes tidal heating and makes it the most geologically active body in the solar system. However, all the energy that goes in to tidal heating is drawn from its orbital energy and would normally cause the orbit to circularize (tidal dissipation), thus eliminating the heating - the only reason that doesn't happen with Io is because it's locked in a 1:2:4 orbital resonance with Europa and Ganymede, both of which have much greater orbital energies.

    Now I imagine this would take longer with a planetary-sized orbit than with a moon-sized orbit, but unless the planet migrated inwards considerably I would expect that it would have largely occurred while the proto-planetary cloud was still coalescing. It might contribute to a longer cooling period, but I don't see how that's really a problem, it's not like a lot of these dwarf stars aren't considerably older than Sol, even a few billion extra years years of cooling would still give life there a head start on us. In fact, considering that Earths volcanic phase is when life here got it's start, a mechanism that might have extended that period seems like it could make life even more likely.

"All the people are so happy now, their heads are caving in. I'm glad they are a snowman with protective rubber skin" -- They Might Be Giants