


Quiet Cellular Antenna Tech To Boost S. African SKA Bid 38
slash-sa writes "Two South Africans have given their home country a boost with its Square Kilometre Array (SKA) bid by inventing cellular antenna technology which reduces 'noisy' emissions from cellular base stations in the area. They reduced emissions by using an antenna based on phased-array principles, providing omnidirectional coverage but also blocking the RF transmissions along a single direction (that would correspond with the bearing of the SKA core site). The antenna has been tested and performs extremely well. Trialling measurements have shown that the RF signal levels at the proposed SKA core site can be reduced significantly, while at the same time, much of the original GSM coverage can be retained."
Why not work the other way... (Score:4, Interesting)
The cost of doing so is almost certainly going to be a tiny fraction of the cost of building an actual devoted function radiotelescope. I had a student estimate the cost per tower to be in the ballpark of $1000 US for a local computer and sundry electronics, probably less purchased in bulk. One could very likely get the tower owners to donate at least the access to the radio signals (basically costs them nothing), a place to site electronics (ditto), and with luck even a channel and some bandwidth to permit the upload of x-hours of recorded phase locked signal in off-peak bursts as part of their "public service" requirement.
The additional benefit is that one ends up with a radiotelescope that spans a continent -- an aperture several thousand kilometers across, with hundreds of thousands to millions of towers contributing. The resolution would thus be orders of magnitude greater than any of these toys that they are trying to fund and the sensitivity (proportional to N^2) would be MANY orders of magnitude greater as well. In fact, one could probably build arrays that spanned continents and turn the entire surface area of the earth into one big radiofrequency "eye" that can be turned not just anywhere but everywhere 24x7 -- the towers basically record a high resolution hologram of the night sky and one can "look" in any direction you like within any single dataset by simply adjusting the phases of the recorded signals appropriately in the decoding. That is, one doesn't have to devote the towers to looking in some particular direction, one can look in all directions at once and choose what to actually look at in detail in the step where the signals are decoded and recombined with appropriate phase delays.
This will never get funded, of course -- it isn't "big science" in any visible way. Or rather, perhaps it already has been funded, because it is one of the few ways I can think of that one could provide an ABM defense with a universal direction "eye" with sufficient resolution to locate an incoming warhead, and (by using the entire array as a phase-locked TRANSMISSION array) one might even be able to deliver a megawatt or so of power of microwave energy directly onto the missile itself and burn it out. Of course, if this is true then I guess I'll soon have somebody knocking on my door for publishing this on
rgb