Want to read Slashdot from your mobile device? Point it at m.slashdot.org and keep reading!


Forgot your password?
Space Science Technology

SpaceX Reveals Plans For Full Launch System Re-usability 227

FleaPlus writes "During a talk at the National Press Club, SpaceX's Elon Musk revealed the company's plans for making their Falcon 9 rocket fully reusable. A rendering depicts the first stage, upper stage, and Dragon capsule all separately returning to the Earth's surface and making a controlled, rocket-powered landing. During the next few years SpaceX will be testing VTVL (Vertical Takeoff, Vertical Landing) maneuvers and re-usability with their Falcon 9-based 'Grasshopper' testbed, with up to 70 test launches per year. Musk stated that if reuse is successful, it would result in a 100x reduction in their already-low launch costs, a key step toward Musk's long-term aim of lowering the price of a ticket to Mars to $500K."
This discussion has been archived. No new comments can be posted.

SpaceX Reveals Plans For Full Launch System Re-usability

Comments Filter:
  • by JoshuaZ ( 1134087 ) on Friday September 30, 2011 @09:07AM (#37565894) Homepage

    This requires separate landing systems for each stage of the rocket. This is a lot more added mass. And the worst thing to add to a rocket is more mass. Simple reusable systems like parachutes (as were used by the shuttle's solid rocket boosters) are one thing, but full-out rocket powered landing will weigh a lot more, will require a lot of additional fuel, and will add all sorts of technical requirements.

    At this point, it doesn't seem that chemical rockets will become that more efficient barring major breakthroughs, like much lighter alloys, or totally new chemical reactions for the fuel. Neither of these seem very likely right now, and the second seems to be much less likely. The first also won't do that much. At this point, I have to be wondering if we should be spending a lot more resources on researching non-rocket methods of going to space. It seems like we may have a bad example of technological lockin since we've put so much work into chemical rockets.

    But there are a lot of other methods out there and we should be looking at them. Nuclear rockets are an obvious example, and they can be built without having any serious radioactivity (you use a conventional fission reactor to heat steam). The basic reactor can be suprisingly light- in the 1950s the US and the USSR both experimented with nuclear powered aircraft http://en.wikipedia.org/wiki/Nuclear_aircraft [wikipedia.org] and reactor technology has improved a lot since then. Another possibility is a space gun. http://en.wikipedia.org/wiki/Space_gun [wikipedia.org]. They have been successfully used to do suborbital lobs. They are completely reusable. And since they don't require sending most of their own fuel into space they avoid the common problem of needing more fuel to lift fuel (which is why rockets get bigger fast compared to the size of payload). There are more exotic ideas also like launch loops, space elevators, and space fountains but they seem to be much further from practicality at this point. In the case of space elevators, the main technical problem is making enough high quality nanotubes in a supporting resin, and research into that is ongoing because high quality carbon nanotubes will be useful a large number of different much more mundane technologies.

The only possible interpretation of any research whatever in the `social sciences' is: some do, some don't. -- Ernest Rutherford