Forgot your password?
typodupeerror
Space

Astronomers Make the Science Case For a Mission To Neptune and Uranus 134

Posted by samzenpus
from the to-the-stars dept.
KentuckyFC writes "The only planets never to have been the subjects of bespoke space missions from Earth are Neptune and Uranus. Now European astronomers are planning to put that straight with a mission called Odinus, which involves twin spacecraft making the journey in 2034. Their justification is that the mission will help explain how the Solar System formed, how it ended up in the configuration we see today and may also explain why 'hot' Neptune-class planets are common around other stars. They also have to overcome the common misconception that Neptune and Uranus are just smaller, less interesting versions of Jupiter and Saturn. Nothing could be further from the truth. For a start, Neptune and Uranus and made of entirely different stuff--mostly ices such as water, ammonia and methane compared with hydrogen and helium for Jupiter and Saturn. That raises the question of how they formed and how they got to the distant reaches of the Solar System. However it happened, Uranus ended up lying on its side, probably because of a cataclysmic collision. And Neptune's largest moon Triton orbits in the opposite direction to its parent's rotation, the only moon in the Solar System to do this. How come? Another question still unanswered is who's going to pay for all this. The team are pinning their hopes on the European Space Agency which has already expressed interest. But would an international collaboration be a better option?"
This discussion has been archived. No new comments can be posted.

Astronomers Make the Science Case For a Mission To Neptune and Uranus

Comments Filter:
  • by thephydes (727739) on Monday February 17, 2014 @02:13PM (#46268735)
    Yes if you get the lenses right.
  • by Grishnakh (216268) on Monday February 17, 2014 @02:45PM (#46269075)

    We don't really need radiation shielding (not that it's hard to devise radiation shielding in the first place; it's called "lead"). All we have to do is tunnel below the Moon's surface. We already do this here on Earth for some scientific experiments that require low radiation (like neutrino detectors). Even better, it's hypothesized that there's already underground tunnels on the Moon, left over from its formation.

    So, we have most of the technology we need; we just need to send a bunch of excavation equipment up there (modified to work with electric motors and batteries, of course, since we'll need to power it using solar power, unless we can find some other energy source on the Moon's surface, such as He3). Obviously, this isn't a cheap proposal, but the idea that we need to develop some kind of Star Trek shielding technology is flatly wrong; we have all the technology now, we just don't have the money or the political will to deploy it there.

  • by Immerman (2627577) on Monday February 17, 2014 @03:02PM (#46269231)

    No it wouldn't. Our knowledge on how to colonize inhospitable planets would increase significantly, but very little of that translates to the challenges of surviving in space where you have to deal with microgravity and hard radiation. Basically almost everything learned colonizing the moon (except stuff about to the moon itself) could also be learned from underground bases on Earth. (And if you're colonizing the moon and putting your outposts on the surface I can only assume you were dropped on your head way too many times as a child. A few yards of rock make pretty much all of your radiation and extreme thermal fluctuation problems go away)

    A lunar outpost doesn't really make much sense unless you're mining and refining rocket fuel for missions to the other planets and/or are seeking to establish a long-term military presence. As an added bonus several of the mass driver or skyhook options you would want for getting fuel into space efficiently can easily double as powerful kinetic-energy weapons

    And thanks to the Moon's low mass, lack of substantial atmosphere, and considerable orbital velocity, you can make an awesomely powerful lunar tumbling skyhook that's only a few hundred kilometers long, can be made without exotic materials, and is capable of picking things up directly from the lunar surface and throwing them on transfer orbits beyond either Venus or Mars without ever subjecting them to accelerations over 1/4G

  • Re:2034? Really? (Score:3, Interesting)

    by sticky.pirate (1114263) on Monday February 17, 2014 @07:16PM (#46271367)
    I haven't looked at the mission plan, but the delay might be based on waiting for more a favorable relative position between Earth and the outer planets. Waiting 20 years to launch the mission might actually allow a spacecraft to arrive earlier than if it were launched now.

Those who can, do; those who can't, simulate.

Working...