Forgot your password?
typodupeerror
Mars Space Science

Mars One Contracts Paragon To Investigate Life Support Systems 118

Posted by Unknown Lamer
from the don't-forget-your-parka dept.
thAMESresearcher writes with news about the progress of Mars One. From the article: "Mars One has taken a bold step toward their goal of establishing a human settlement on Mars in 2023 by contracting with its first aerospace supplier, Paragon Space Development Corporation. ... The contract will enable the initial conceptual design of the Environmental Control and Life Support System (ECLSS) and Mars Surface Exploration Spacesuit System. During this study, Paragon will identify major suppliers, concepts, and technologies that exist today and can be used as the baseline architecture for further development. The ECLSS will provide and maintain a safe, reliable environment for the inhabitants, providing them with clean air and water. The Mars suits will enable the settlers to work outside of the habitat and explore the surface of Mars."
This discussion has been archived. No new comments can be posted.

Mars One Contracts Paragon To Investigate Life Support Systems

Comments Filter:
  • by Immerman (2627577) on Tuesday March 12, 2013 @05:33AM (#43146975)

    Yeah, I think the technology for that's a bit off yet, we haven't even managed to even keep a probe alive on Venus for more than a couple hours despite 50 years of trying - not even the atmospheric ones. Between the high temperatures, the corrosive gasses, the high winds, and violent lightning storms it's not a friendly place. Definitely not someplace you'd want to experience with only Scuba gear. Not to mention those surface-mining robots will have to survive not only the lead-melting surface temperatures and corrosive weather, but also the 92-atmosphere air pressure - equivalent to being about 1km underwater on Earth.

    There's also a major problem with buoyancy - unless your city skin is rigid then any downdraft will cause the pressure to rapidly increase, and the volume to decrease, reducing buoyancy and speeding the descent. Similarly an updraft will cause pressure to drop rapidly and risk bursting the city skin. Airships have to deal with these problems on Earth, but with a much more gentle pressure gradient and non-corrosive environment.

    Solar energy probably wouldn't be viable since above the CO2 clouds lie another layer clouds consisting of sulfur dioxide and sulfuric acid which reflect ~90% of incoming sunlight back into space. As for 1 trillion people living in these cities, what would be the point? Far easier and safer to create vast underground arcologies on Earth.

    Mars by comparison is actually quite pleasant. A bit cold, but heat is easy to generate and the atmosphere is near vacuum which makes it an excellent insulator, so you only lose significant heat to the ground. Water is plentiful at the poles and possibly elsewhere underground, and unlimited near-pure CO2 is delivered fresh to your doorstep year round at roughly Earth-normal partial pressure, you just have to compress it and feed it into your greenhouses, no toxic gasses to be removed first. Admittedly going for an unprotected walk outdoors could be painful, but a glorified wetsuit could apply sufficient skin pressure to prevent injury, and a breathing mask would protect your face. Most people on Earth can fairly easily adapt to high altitude air pressures around 1/2 ATM - operate the base on a pure oxygen atmosphere at the same partial pressure and you're only dealing with 1/10 ATM, or about 1.5psi, easy to contain, or add nitrogen to reach a more pleasant pressure - the martian atmosphere is about 2% N2 so it will be easy to replenish. Living quarters can be radiation shielded by the simple expedient of burying them in a few meters of sand - another plentiful and versatile Martian resource. Bring along some sort of binding agent for it and you wouldn't even need much in the way of habitat - just encase some some big inflatable domes in "concrete" and install airlocks.

    All in all Mars could readily be colonized using a mostly low-tech approach, ideal for establishing a colony that could rapidly become mostly self-sufficient. If the Soviets had ever made it there their rough-and-ready space program would have been right at home establishing a colony. Venus on the other hand - lets terraform that sucker, it's the only way it'll be anything but a hellhole to us. First we need to unleash some sort of atmospheric organism that will bind all that excess carbon into a stable form... Then we can examine step two in a century or two after the planet has cooled off a little.

  • by BradleyUffner (103496) on Tuesday March 12, 2013 @05:37AM (#43147001) Homepage

    Why would having a colony in Mars actually be better than having a colony in space instead?

    A colony on Mars would have access to planetary resources, such as ice, to provide water, oxygen, and hydrogen. The settlement could also theoretically be excavated below the surface and covered with "soil" to provide better radiation shielding. The presence of an atmosphere, even if it's a lot less than Earth's, gives at least a little bit of safety and time to respond to life support emergencies than a space station would. It would act as the first stage for longer term, higher population, colonization than could be supported on a space station.

  • by Immerman (2627577) on Tuesday March 12, 2013 @06:12AM (#43147123)

    Don't forget CO2 in those planetary resources - Mars has roughly the same partial pressure of CO2 as Earth, it's just that that's all there is (also conveniently some trace nitrogen) Just pump it into your greenhouses and the plants will do the rest.

    Also sand - add a binding agent and you've got "concrete", if you can find resources to make the binding agent locally so much the better, but even without that all you need to build a basic habitat is an airlock, a big inflatable dome (doesn't even have to be that durable), and enough binding agent to coat it inside and out with a nice thick layer of "concrete".

It's not so hard to lift yourself by your bootstraps once you're off the ground. -- Daniel B. Luten

Working...