Forgot your password?
typodupeerror
Science

Physicists Discover 13 New Solutions To Three-Body Problem 127

Posted by Unknown Lamer
from the mystical-spheres dept.
sciencehabit writes "It's the sort of abstract puzzle that keeps a scientist awake at night: Can you predict how three objects will orbit each other in a repeating pattern? In the 300 years since this 'three-body problem' was first recognized, just three families of solutions have been found. Now, two physicists have discovered 13 new families. It's quite a feat in mathematical physics, and it could conceivably help astrophysicists understand new planetary systems." The paper is available at arxiv.
This discussion has been archived. No new comments can be posted.

Physicists Discover 13 New Solutions To Three-Body Problem

Comments Filter:
  • by Anonymous Coward on Saturday March 09, 2013 @03:50PM (#43127083)

    The orbit gallery [ipb.ac.rs]

    Click on an orbit and look at the "real space" diagram to see the actual paths of the planets.

  • Re:having said that (Score:4, Informative)

    by Anonymous Coward on Saturday March 09, 2013 @03:51PM (#43127095)

    would anyone care to explain how much accurate are the numerical analysis/numerical integration solutions ?

    They are as accurate as you care to make them. The problem is that increased accuracy over a long period can
    require an exponential increase in cost.

    Does the accuracy depend on how small is the dt we chose between each calculation ?

    Precisely.

  • Very special cases (Score:5, Informative)

    by tylersoze (789256) on Saturday March 09, 2013 @03:53PM (#43127107)

    While the results are interesting, it looks like the 13 new solutions all involve 3 equal mass bodies with total zero angular momentum and coplanar. Of course, all the periodic solutions are probably special cases of some sort.

  • Re:having said that (Score:5, Informative)

    by etash (1907284) on Saturday March 09, 2013 @03:55PM (#43127117)
    so that actually means that for any dt, however small it is, given enough simulation time, there is a time point in the future after which the simulation is completely wrong ( for various values of "completely" )
  • by K. S. Kyosuke (729550) on Saturday March 09, 2013 @04:09PM (#43127197)

    "how can I get my girlfriend and her cute roommate into bed at the same time?"

    Try turning the lights off and leaving the room.

  • Re:having said that (Score:2, Informative)

    by Anonymous Coward on Saturday March 09, 2013 @04:13PM (#43127219)

    It really just means no closed form solution... falls under advanced algebra. Interesting results, boring class.

  • Re:having said that (Score:5, Informative)

    by MickLinux (579158) on Saturday March 09, 2013 @04:59PM (#43127439) Journal

    I don't think they did it that way, rathe, they are using the computer to help them predict repeating lissajous patterns (for want of a better term) on their transformed sphere-space.

    That then relates back to a specific repeating orbit in 3-space.

    This is rather interesting, in that it is quite similar (methinks) to the knot classification problem.

    But looking at the lissajous figures, it doesn't really seem to me that there are fourteen new classes, unless the lagrange solutions -- which are all a single class -- were counted as five.

    But it's no less impressive, what they have done. They have started to transform from physicists to mathematicians.

  • by c0lo (1497653) on Saturday March 09, 2013 @06:02PM (#43127787)

    While the results are interesting, it looks like the 13 new solutions all involve 3 equal mass bodies with total zero angular momentum and coplanar. Of course, all the periodic solutions are probably special cases of some sort.

    From the point of view of "conceivably help astrophysicists understand new planetary systems" (TFA claim): the zero angular momentum doesn't bother me that much: it'd be a planetary system that rotates in time. The coplanar... mmmhh... maybe an acceptable approximation. It is the mass equality that one doesn't see too often.

  • Re:having said that (Score:4, Informative)

    by semi-extrinsic (1997002) <asmunder@stud.nt[ ]no ['nu.' in gap]> on Saturday March 09, 2013 @07:09PM (#43128067)

    It's not that a particle has a theoretical probability of being somewhere with some probable momentum, no it will be at a very real place at a very real time with a very actual momentum. It's just that practically it's so complicated to predict it, that the best way we have come up till now are quantum mechanics .

    Nope, you're wrong. Here are the experimental [aps.org] evidence [aapt.org] which falsify [sciencemag.org] your hypothesis. Bonus: Zombie Feynman [xkcd.com].

Make sure your code does nothing gracefully.

Working...