Forgot your password?
typodupeerror
Science

Quantum Entanglement of Macroscopic Diamonds 160

Posted by Soulskill
from the simultaneously-a-girl's-best-friend-and-not dept.
New submitter ananyo writes "A pair of diamond crystals has been linked by quantum entanglement — one of the first times that objects visible to the naked eye have been placed in a connected quantum state. 'This means that a vibration in the crystals could not be meaningfully assigned to one or other of them: both crystals were simultaneously vibrating and not vibrating (abstract). Quantum entanglement — interdependence of quantum states between particles not in physical contact — has been well established between quantum particles such as atoms at ultra-cold temperatures. But like most quantum effects, it doesn't tend to survive either at room temperature or in objects large enough to see with the naked eye.'"
This discussion has been archived. No new comments can be posted.

Quantum Entanglement of Macroscopic Diamonds

Comments Filter:
  • by Shadow of Eternity (795165) on Friday December 02, 2011 @04:05PM (#38243170)

    As near as I can understand this they're entangled so that vibrations in one are indistinguishable from vibrations in another, they both do the same thing at the same time (or near it at least)... doesn't this imply the ability to entangle two whatevers and transit information via entanglement induced vibrations?

  • by dak664 (1992350) on Friday December 02, 2011 @06:29PM (#38245356) Journal

    Let us not lose sight of the fact that a photon is a statistical convenience, not a particle, and a phonon is even less a particle. You can't send "one photon" and detect "one phonon". These are statistical coincidence measurements that detect correlated behavior between the two diamonds after an electromagnetic interaction that can not transfer less than Planck's constant of action. Either diamond would show a 50% excitation in the absence of the signal from the other. Spooky action at a distance is inferred from correlation of the states over a large number of events. Which is why quantum computing is not going to be as fast as everyone thinks it will be.

"Never ascribe to malice that which is caused by greed and ignorance." -- Cal Keegan

Working...