Forgot your password?
typodupeerror
ISS NASA Space Science

Dragon Capsule Could Be 1st Private Craft To Dock With ISS 178

Posted by timothy
from the inflection-point dept.
thomst writes "Space News reports that NASA has given tentative approval for SpaceX to combine the two remaining flights designed to prove the Hawthorne, Calif., company can deliver cargo to the international space station, according to William Gerstenmaier, NASA's associate administrator for space operations, although formal approval for the mission is still pending. If NASA does approve the plan, SpaceX's Dragon capsule would be the first civilian spacecraft actually to dock with the International Space Station. According to NASA spokesman Joshua Buck, the current plan calls for SpaceX to launch a Dragon capsule aboard a Falcon 9 rocket on Nov. 30, which would then rendezvous and dock with the space station on Dec. 7 — a day that would live in spaceflight history."
This discussion has been archived. No new comments can be posted.

Dragon Capsule Could Be 1st Private Craft To Dock With ISS

Comments Filter:
  • Also throw in the fact that SpaceX is NOT incorporating reusability into their price points (from what I have seen, the boosters are designed to be recoverable but the cost structure isn't built around that being an expectation for each launch)...and now all of a sudden the price point becomes lower. Musk said recently the propellent costs for a Falcon 9 launch were around $150k. If he can get a 50% reuse rate of of his boosters, that's a hell of a cost savings AND drives the cost to orbit down much lower.
  • by vlm (69642) on Tuesday July 26, 2011 @09:27AM (#36882556)

    Surely NASA is a "civilian" space agency, and the shuttle therefore a civilian craft?

    No, numerous design decisions early on in the program were made strictly to appease the defense dept. Most of them revolved around the mission requirement of launching, grabbing a russian spy sat and placing it in the cargo bay, and landing on next orbit. This requires a ridiculous cross-range capability as the launching site rotates with the earth about 2000 miles east during an orbit. Also the DoD mandated some weird on orbit maneuvering capability which I don't remember (probably some classified anti-asat maneuverability, or maybe it was something to do with the RCS system being stable enough to stick a telescope in the cargo bay for military observational purposes?)

    There was also a long cross range capability for military purposes... If a civilian is worried about landing short, just aim at the center of the USA and you're all good. Insane as it sounds, if you want to land at a military base in Japan or Israel, and its a no-go for weather or whatever, you need crossrange to ... somewhere freaking far away. What, Korea or Australia as alternates for Japan, or maybe... diego garcia as an alternate for israel? Unlike F-16s etc we never sold any shuttles to Israel or even landed ours in Japan. But the DoD made us design the vehicle to possibly do it.

    The point wasn't to actually steal russian sats, which would be quite the diplomatic incident. The point was to scare them into a higher orbit out of SS range. Same sat higher up means lower resolution and less consumables means its got less lifetime and/or costs more. You only have to scare them once, during design phase, and their sats are crippled until the next generation. Presumably we wouldn't steal our own sats, and they were not going to make a clone of our SS (although turns out they did anyway) so in true cold war deterrence fashion, the end result of building the SS to DoD specs means the russians inherently end up with crappier spy sats than we do.

    Well, we never did a mission like that, never even flew a super long cross range landing, for most of the active flying SS program the USSR no longer existed, it got really popular to put a giant sat with giant optics and long lifetime in geosync instead of little ones in low orbit that deorbit relatively rapidly. So it was all kind of pointless.

Two is not equal to three, even for large values of two.

Working...