Slashdot is powered by your submissions, so send in your scoop

 



Forgot your password?
typodupeerror
Note: You can take 10% off all Slashdot Deals with coupon code "slashdot10off." ×
Science

Inertial Mass Separate From Gravitational Mass? 405

CPerdue writes with this excerpt from the MIT arXiv blog: "The equivalence principle is one of the more fascinating ideas in modern science. It asserts that gravitational mass and inertial mass are identical. Einstein put it like this: the gravitational force we experience on Earth is identical to the force we would experience were we sitting in a spaceship accelerating at 1g. Newton might have said that the m in F=ma is the same as the ms in F=Gm1m2/r^2. ... All that changes today with the extraordinary work of Endre Kajari at the University of Ulm in Germany and a few buddies. They show how it is possible to create situations in the quantum world in which the effects of inertial and gravitational mass must be different. In fact, they show that these differences can be arbitrarily large."
This discussion has been archived. No new comments can be posted.

Inertial Mass Separate From Gravitational Mass?

Comments Filter:

Related Links Top of the: day, week, month.

Of course you can't flap your arms and fly to the moon. After a while you'd run out of air to push against.

Working...